Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 1-\frac{x}{2}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 1\mathrm{d}x+\int -\frac{x}{2}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\int 1\mathrm{d}x-\frac{\int x\mathrm{d}x}{2}
Whakatauwehea te pūmau i ēnei kīanga katoa.
x-\frac{\int x\mathrm{d}x}{2}
Kimihia te tau tōpū o 1 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
x-\frac{x^{2}}{4}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -\frac{1}{2} ki te \frac{x^{2}}{2}.
3-\frac{3^{2}}{4}-\left(2-\frac{2^{2}}{4}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-\frac{1}{4}
Whakarūnātia.