Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{10}^{20}\left(x^{2}-1\right)e^{0x}\mathrm{d}x
Whakareatia te 0 ki te 2, ka 0.
\int _{10}^{20}\left(x^{2}-1\right)e^{0}\mathrm{d}x
Ko te tau i whakarea ki te kore ka hua ko te kore.
\int _{10}^{20}\left(x^{2}-1\right)\times 1\mathrm{d}x
Tātaihia te e mā te pū o 0, kia riro ko 1.
\int _{10}^{20}x^{2}-1\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te x^{2}-1 ki te 1.
\int x^{2}-1\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int x^{2}\mathrm{d}x+\int -1\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\frac{x^{3}}{3}+\int -1\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}.
\frac{x^{3}}{3}-x
Kimihia te tau tōpū o -1 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{20^{3}}{3}-20-\left(\frac{10^{3}}{3}-10\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{6970}{3}
Whakarūnātia.