Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 3t\mathrm{d}t
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
3\int t\mathrm{d}t
Whakatauwehetia te pūmau mā te whakamahi i te \int af\left(t\right)\mathrm{d}t=a\int f\left(t\right)\mathrm{d}t.
\frac{3t^{2}}{2}
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t\mathrm{d}t ki te \frac{t^{2}}{2}.
\frac{3}{2}x^{2}-\frac{3}{2}\times 1^{2}
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{3x^{2}-3}{2}
Whakarūnātia.