Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \frac{1}{\sqrt[3]{x}}-3x^{15}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int \frac{1}{\sqrt[3]{x}}\mathrm{d}x+\int -3x^{15}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\int \frac{1}{\sqrt[3]{x}}\mathrm{d}x-3\int x^{15}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{3x^{\frac{2}{3}}}{2}-3\int x^{15}\mathrm{d}x
Tuhia anō te \frac{1}{\sqrt[3]{x}} hei x^{-\frac{1}{3}}. Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{-\frac{1}{3}}\mathrm{d}x ki te \frac{x^{\frac{2}{3}}}{\frac{2}{3}}. Whakarūnātia.
\frac{3x^{\frac{2}{3}}}{2}-\frac{3x^{16}}{16}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{15}\mathrm{d}x ki te \frac{x^{16}}{16}. Whakareatia -3 ki te \frac{x^{16}}{16}.
\frac{3}{2}\times 8^{\frac{2}{3}}-\frac{3}{16}\times 8^{16}-\left(\frac{3}{2}\times 1^{\frac{2}{3}}-\frac{3}{16}\times 1^{16}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-\frac{844424930131893}{16}
Whakarūnātia.