Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \frac{5}{\sqrt[4]{x}}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
5\int \frac{1}{\sqrt[4]{x}}\mathrm{d}x
Whakatauwehetia te pūmau mā te whakamahi i te \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\frac{20x^{\frac{3}{4}}}{3}
Tuhia anō te \frac{1}{\sqrt[4]{x}} hei x^{-\frac{1}{4}}. Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{-\frac{1}{4}}\mathrm{d}x ki te \frac{x^{\frac{3}{4}}}{\frac{3}{4}}. Whakarūnātia.
\frac{20}{3}\times 4^{\frac{3}{4}}-\frac{20}{3}\times 1^{\frac{3}{4}}
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{40\sqrt{2}-20}{3}
Whakarūnātia.