Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{1}^{2}6x^{2}-6\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te 6 ki te x^{2}-1.
\int 6x^{2}-6\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 6x^{2}\mathrm{d}x+\int -6\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
6\int x^{2}\mathrm{d}x+\int -6\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
2x^{3}+\int -6\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 6 ki te \frac{x^{3}}{3}.
2x^{3}-6x
Kimihia te tau tōpū o -6 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
2\times 2^{3}-6\times 2-\left(2\times 1^{3}-6\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
8
Whakarūnātia.