Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{1}^{2}x^{2}+3x-x-3\mathrm{d}x
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o x-1 ki ia tau o x+3.
\int _{1}^{2}x^{2}+2x-3\mathrm{d}x
Pahekotia te 3x me -x, ka 2x.
\int x^{2}+2x-3\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int x^{2}\mathrm{d}x+\int 2x\mathrm{d}x+\int -3\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -3\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{x^{3}}{3}+2\int x\mathrm{d}x+\int -3\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}.
\frac{x^{3}}{3}+x^{2}+\int -3\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 2 ki te \frac{x^{2}}{2}.
\frac{x^{3}}{3}+x^{2}-3x
Kimihia te tau tōpū o -3 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{2^{3}}{3}+2^{2}-3\times 2-\left(\frac{1^{3}}{3}+1^{2}-3\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{7}{3}
Whakarūnātia.