Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{1}^{2}\left(\left(x^{3}\right)^{2}+10x^{3}+25\right)\times 3x^{2}\mathrm{d}x
Whakamahia te ture huarua \left(a+b\right)^{2}=a^{2}+2ab+b^{2} hei whakaroha \left(x^{3}+5\right)^{2}.
\int _{1}^{2}\left(x^{6}+10x^{3}+25\right)\times 3x^{2}\mathrm{d}x
Hei hiki pū ki tētahi pū anō, me whakarea ngā taupū. Me whakarea te 3 me te 2 kia riro ai te 6.
\int _{1}^{2}\left(3x^{6}+30x^{3}+75\right)x^{2}\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te x^{6}+10x^{3}+25 ki te 3.
\int _{1}^{2}3x^{8}+30x^{5}+75x^{2}\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te 3x^{6}+30x^{3}+75 ki te x^{2}.
\int 3x^{8}+30x^{5}+75x^{2}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 3x^{8}\mathrm{d}x+\int 30x^{5}\mathrm{d}x+\int 75x^{2}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
3\int x^{8}\mathrm{d}x+30\int x^{5}\mathrm{d}x+75\int x^{2}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{x^{9}}{3}+30\int x^{5}\mathrm{d}x+75\int x^{2}\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{8}\mathrm{d}x ki te \frac{x^{9}}{9}. Whakareatia 3 ki te \frac{x^{9}}{9}.
\frac{x^{9}}{3}+5x^{6}+75\int x^{2}\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{5}\mathrm{d}x ki te \frac{x^{6}}{6}. Whakareatia 30 ki te \frac{x^{6}}{6}.
\frac{x^{9}}{3}+5x^{6}+25x^{3}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 75 ki te \frac{x^{3}}{3}.
25\times 2^{3}+5\times 2^{6}+\frac{2^{9}}{3}-\left(25\times 1^{3}+5\times 1^{6}+\frac{1^{9}}{3}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{1981}{3}
Whakarūnātia.