Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 3t^{2}-t\mathrm{d}t
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 3t^{2}\mathrm{d}t+\int -t\mathrm{d}t
Kōmitimititia te kīanga tapeke mā te kīanga.
3\int t^{2}\mathrm{d}t-\int t\mathrm{d}t
Whakatauwehea te pūmau i ēnei kīanga katoa.
t^{3}-\int t\mathrm{d}t
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t^{2}\mathrm{d}t ki te \frac{t^{3}}{3}. Whakareatia 3 ki te \frac{t^{3}}{3}.
t^{3}-\frac{t^{2}}{2}
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t\mathrm{d}t ki te \frac{t^{2}}{2}. Whakareatia -1 ki te \frac{t^{2}}{2}.
2^{3}-\frac{2^{2}}{2}-\left(1^{3}-\frac{1^{2}}{2}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{11}{2}
Whakarūnātia.