Aromātai
2\sqrt{2}-\frac{7}{2}\approx -0.671572875
Pātaitai
Integration
5 raruraru e ōrite ana ki:
\int _ { 1 } ^ { 2 } ( \frac { 1 } { \sqrt { x } } - x ) d x
Tohaina
Kua tāruatia ki te papatopenga
\int \frac{1}{\sqrt{x}}-x\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int \frac{1}{\sqrt{x}}\mathrm{d}x+\int -x\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\int \frac{1}{\sqrt{x}}\mathrm{d}x-\int x\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
2\sqrt{x}-\int x\mathrm{d}x
Tuhia anō te \frac{1}{\sqrt{x}} hei x^{-\frac{1}{2}}. Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{-\frac{1}{2}}\mathrm{d}x ki te \frac{x^{\frac{1}{2}}}{\frac{1}{2}}. Whakarūnāhia me te tahuri mai i te āhua taupū ki te āhua pūtake.
2\sqrt{x}-\frac{x^{2}}{2}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -1 ki te \frac{x^{2}}{2}.
2\times 2^{\frac{1}{2}}-\frac{2^{2}}{2}-\left(2\times 1^{\frac{1}{2}}-\frac{1^{2}}{2}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
2\sqrt{2}-\frac{7}{2}
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}