Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \frac{3}{t^{4}}\mathrm{d}t
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
3\int \frac{1}{t^{4}}\mathrm{d}t
Whakatauwehetia te pūmau mā te whakamahi i te \int af\left(t\right)\mathrm{d}t=a\int f\left(t\right)\mathrm{d}t.
-\frac{1}{t^{3}}
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int \frac{1}{t^{4}}\mathrm{d}t ki te -\frac{1}{3t^{3}}. Whakareatia 3 ki te -\frac{1}{3t^{3}}.
-2^{-3}+1^{-3}
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{7}{8}
Whakarūnātia.