Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0\times 5}^{1}p^{7}-p^{8}\mathrm{d}p
Whakamahia te āhuatanga tohatoha hei whakarea te p^{7} ki te 1-p.
\int _{0}^{1}p^{7}-p^{8}\mathrm{d}p
Whakareatia te 0 ki te 5, ka 0.
\int p^{7}-p^{8}\mathrm{d}p
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int p^{7}\mathrm{d}p+\int -p^{8}\mathrm{d}p
Kōmitimititia te kīanga tapeke mā te kīanga.
\int p^{7}\mathrm{d}p-\int p^{8}\mathrm{d}p
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{p^{8}}{8}-\int p^{8}\mathrm{d}p
Nā te mea \int p^{k}\mathrm{d}p=\frac{p^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int p^{7}\mathrm{d}p ki te \frac{p^{8}}{8}.
\frac{p^{8}}{8}-\frac{p^{9}}{9}
Nā te mea \int p^{k}\mathrm{d}p=\frac{p^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int p^{8}\mathrm{d}p ki te \frac{p^{9}}{9}. Whakareatia -1 ki te \frac{p^{9}}{9}.
\frac{1^{8}}{8}-\frac{1^{9}}{9}-\left(\frac{0^{8}}{8}-\frac{0^{9}}{9}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{1}{72}
Whakarūnātia.