Aromātai
\frac{1}{72}\approx 0.013888889
Tohaina
Kua tāruatia ki te papatopenga
\int _{0\times 5}^{1}p^{7}-p^{8}\mathrm{d}p
Whakamahia te āhuatanga tohatoha hei whakarea te p^{7} ki te 1-p.
\int _{0}^{1}p^{7}-p^{8}\mathrm{d}p
Whakareatia te 0 ki te 5, ka 0.
\int p^{7}-p^{8}\mathrm{d}p
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int p^{7}\mathrm{d}p+\int -p^{8}\mathrm{d}p
Kōmitimititia te kīanga tapeke mā te kīanga.
\int p^{7}\mathrm{d}p-\int p^{8}\mathrm{d}p
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{p^{8}}{8}-\int p^{8}\mathrm{d}p
Nā te mea \int p^{k}\mathrm{d}p=\frac{p^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int p^{7}\mathrm{d}p ki te \frac{p^{8}}{8}.
\frac{p^{8}}{8}-\frac{p^{9}}{9}
Nā te mea \int p^{k}\mathrm{d}p=\frac{p^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int p^{8}\mathrm{d}p ki te \frac{p^{9}}{9}. Whakareatia -1 ki te \frac{p^{9}}{9}.
\frac{1^{8}}{8}-\frac{1^{9}}{9}-\left(\frac{0^{8}}{8}-\frac{0^{9}}{9}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{1}{72}
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}