Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \frac{264x+192x^{2}}{5}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int \frac{264x}{5}\mathrm{d}x+\int \frac{192x^{2}}{5}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\frac{264\int x\mathrm{d}x+192\int x^{2}\mathrm{d}x}{5}
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{132x^{2}+192\int x^{2}\mathrm{d}x}{5}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 52.8 ki te \frac{x^{2}}{2}.
\frac{132x^{2}+64x^{3}}{5}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 38.4 ki te \frac{x^{3}}{3}.
\frac{132}{5}\times 1^{2}+\frac{64}{5}\times 1^{3}-\left(\frac{132}{5}\times 0.5^{2}+\frac{64}{5}\times 0.5^{3}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
31
Whakarūnātia.