Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int x^{2}+\sin(x)\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int x^{2}\mathrm{d}x+\int \sin(x)\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\frac{x^{3}}{3}+\int \sin(x)\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}.
\frac{x^{3}}{3}-\cos(x)
Whakamahia te \int \sin(x)\mathrm{d}x=-\cos(x) mai i te ripanga o ngā tau tōpū pātahi kia whakaputa i te huanga.
\frac{8^{3}}{3}-\cos(8)-\left(\frac{0^{3}}{3}-\cos(0)\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{1}{3}\left(-3\cos(8)+515\right)
Whakarūnātia.