Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0}^{6}0x^{2}-3x\mathrm{d}x
Whakareatia te 0 ki te 5, ka 0.
\int _{0}^{6}0-3x\mathrm{d}x
Ko te tau i whakarea ki te kore ka hua ko te kore.
\int _{0}^{6}-3x\mathrm{d}x
Ko te tau i tāpiria he kore ka hua koia tonu.
\int -3x\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
-3\int x\mathrm{d}x
Whakatauwehetia te pūmau mā te whakamahi i te \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
-\frac{3x^{2}}{2}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}.
-\frac{3}{2}\times 6^{2}+\frac{3}{2}\times 0^{2}
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-54
Whakarūnātia.