Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 2\left(e^{x}+2\cos(x)\right)\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 2e^{x}\mathrm{d}x+\int 4\cos(x)\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
2\left(\int e^{x}\mathrm{d}x+2\int \cos(x)\mathrm{d}x\right)
Whakatauwehea te pūmau i ēnei kīanga katoa.
2\left(e^{x}+2\int \cos(x)\mathrm{d}x\right)
Whakamahia te \int e^{x}\mathrm{d}x=e^{x} mai i te ripanga o ngā tau tōpū pātahi kia whakaputa i te huanga.
2\left(e^{x}+2\sin(x)\right)
Whakamahia te \int \cos(x)\mathrm{d}x=\sin(x) mai i te ripanga o ngā tau tōpū pātahi kia whakaputa i te huanga.
2e^{5}+4\sin(5)-\left(2e^{0}+4\sin(0)\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
2\left(e^{5}+2\sin(5)-1\right)
Whakarūnātia.