Aromātai
-\frac{16}{3}\approx -5.333333333
Pātaitai
Integration
5 raruraru e ōrite ana ki:
\int _ { 0 } ^ { 4 } ( 6 - ( 4 - \sqrt { x } ) ^ { 2 } ) d x
Tohaina
Kua tāruatia ki te papatopenga
\int _{0}^{4}6-\left(16-8\sqrt{x}+\left(\sqrt{x}\right)^{2}\right)\mathrm{d}x
Whakamahia te ture huarua \left(a-b\right)^{2}=a^{2}-2ab+b^{2} hei whakaroha \left(4-\sqrt{x}\right)^{2}.
\int _{0}^{4}6-\left(16-8\sqrt{x}+x\right)\mathrm{d}x
Tātaihia te \sqrt{x} mā te pū o 2, kia riro ko x.
\int _{0}^{4}6-16+8\sqrt{x}-x\mathrm{d}x
Hei kimi i te tauaro o 16-8\sqrt{x}+x, kimihia te tauaro o ia taurangi.
\int _{0}^{4}-10+8\sqrt{x}-x\mathrm{d}x
Tangohia te 16 i te 6, ka -10.
\int -10+8\sqrt{x}-x\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int -10\mathrm{d}x+\int 8\sqrt{x}\mathrm{d}x+\int -x\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\int -10\mathrm{d}x+8\int \sqrt{x}\mathrm{d}x-\int x\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
-10x+8\int \sqrt{x}\mathrm{d}x-\int x\mathrm{d}x
Kimihia te tau tōpū o -10 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
-10x+\frac{16x^{\frac{3}{2}}}{3}-\int x\mathrm{d}x
Tuhia anō te \sqrt{x} hei x^{\frac{1}{2}}. Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{\frac{1}{2}}\mathrm{d}x ki te \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Whakarūnātia. Whakareatia 8 ki te \frac{2x^{\frac{3}{2}}}{3}.
-10x+\frac{16x^{\frac{3}{2}}}{3}-\frac{x^{2}}{2}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -1 ki te \frac{x^{2}}{2}.
-10x-\frac{x^{2}}{2}+\frac{16x^{\frac{3}{2}}}{3}
Whakarūnātia.
-10\times 4-\frac{4^{2}}{2}+\frac{16}{3}\times 4^{\frac{3}{2}}-\left(-10\times 0-\frac{0^{2}}{2}+\frac{16}{3}\times 0^{\frac{3}{2}}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-\frac{16}{3}
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}