Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int x^{3}-2x^{2}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int x^{3}\mathrm{d}x+\int -2x^{2}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\int x^{3}\mathrm{d}x-2\int x^{2}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{x^{4}}{4}-2\int x^{2}\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{3}\mathrm{d}x ki te \frac{x^{4}}{4}.
\frac{x^{4}}{4}-\frac{2x^{3}}{3}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia -2 ki te \frac{x^{3}}{3}.
\frac{3^{4}}{4}-\frac{2}{3}\times 3^{3}-\left(\frac{0^{4}}{4}-\frac{2}{3}\times 0^{3}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{9}{4}
Whakarūnātia.