Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0}^{2}3x+2x^{2}\mathrm{d}x
Whakamahia te āhuatanga tohatoha hei whakarea te x ki te 3+2x.
\int 3x+2x^{2}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 3x\mathrm{d}x+\int 2x^{2}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
3\int x\mathrm{d}x+2\int x^{2}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{3x^{2}}{2}+2\int x^{2}\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 3 ki te \frac{x^{2}}{2}.
\frac{3x^{2}}{2}+\frac{2x^{3}}{3}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 2 ki te \frac{x^{3}}{3}.
\frac{3}{2}\times 2^{2}+\frac{2}{3}\times 2^{3}-\left(\frac{3}{2}\times 0^{2}+\frac{2}{3}\times 0^{3}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{34}{3}
Whakarūnātia.