Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki y
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 2x-2y\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 2x\mathrm{d}x+\int -2y\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
2\int x\mathrm{d}x-2\int y\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
x^{2}-2\int y\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 2 ki te \frac{x^{2}}{2}.
x^{2}-2yx
Kimihia te tau tōpū o y mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
2^{2}-2y\times 2-\left(0^{2}-2y\times 0\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
4-4y
Whakarūnātia.