Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int e^{x}-x\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int e^{x}\mathrm{d}x+\int -x\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\int e^{x}\mathrm{d}x-\int x\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
e^{x}-\int x\mathrm{d}x
Whakamahia te \int e^{x}\mathrm{d}x=e^{x} mai i te ripanga o ngā tau tōpū pātahi kia whakaputa i te huanga.
e^{x}-\frac{x^{2}}{2}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -1 ki te \frac{x^{2}}{2}.
e^{2}-\frac{2^{2}}{2}-\left(e^{0}-\frac{0^{2}}{2}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
e^{2}-3
Whakarūnātia.