Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki h
Tick mark Image

Tohaina

\int \arctan(h)x\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\arctan(h)\int x\mathrm{d}x
Whakatauwehetia te pūmau mā te whakamahi i te \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\arctan(h)\times \frac{x^{2}}{2}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}.
\frac{\arctan(h)x^{2}}{2}
Whakarūnātia.
\frac{1}{2}\arctan(h)\times \left(2\pi \right)^{2}-\frac{1}{2}\arctan(h)\times 0^{2}
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
2\arctan(h)\pi ^{2}
Whakarūnātia.