Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \int _{0}^{1}r\sqrt{4r^{2}+1}\mathrm{d}r\mathrm{d}\theta
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int _{0}^{1}r\sqrt{4r^{2}+1}\mathrm{d}r\theta
Kimihia te tau tōpū o \int _{0}^{1}r\sqrt{4r^{2}+1}\mathrm{d}r mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}\theta =a\theta .
\frac{5\sqrt{5}-1}{12}\theta
Whakarūnātia.
\left(\frac{5}{12}\times 5^{\frac{1}{2}}-\frac{1}{12}\right)\times 2\pi -\left(\frac{5}{12}\times 5^{\frac{1}{2}}-\frac{1}{12}\right)\times 0
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{5\sqrt{5}\pi -\pi }{6}
Whakarūnātia.