Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki x
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int r-r^{2}\mathrm{d}r
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int r\mathrm{d}r+\int -r^{2}\mathrm{d}r
Kōmitimititia te kīanga tapeke mā te kīanga.
\int r\mathrm{d}r-\int r^{2}\mathrm{d}r
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{r^{2}}{2}-\int r^{2}\mathrm{d}r
Nā te mea \int r^{k}\mathrm{d}r=\frac{r^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int r\mathrm{d}r ki te \frac{r^{2}}{2}.
\frac{r^{2}}{2}-\frac{r^{3}}{3}
Nā te mea \int r^{k}\mathrm{d}r=\frac{r^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int r^{2}\mathrm{d}r ki te \frac{r^{3}}{3}. Whakareatia -1 ki te \frac{r^{3}}{3}.
\frac{1}{2}\times \left(2\cos(x)\right)^{2}-\frac{1}{3}\times \left(2\cos(x)\right)^{3}-\left(\frac{0^{2}}{2}-\frac{0^{3}}{3}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\left(\cos(x)\right)^{2}\left(2-\frac{8\cos(x)}{3}\right)
Whakarūnātia.