Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki θ
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int r^{2}\mathrm{d}r
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\frac{r^{3}}{3}
Nā te mea \int r^{k}\mathrm{d}r=\frac{r^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int r^{2}\mathrm{d}r ki te \frac{r^{3}}{3}.
\frac{1}{3}\times \left(2\cos(\theta )\right)^{3}-\frac{0^{3}}{3}
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{8\left(\cos(\theta )\right)^{3}}{3}
Whakarūnātia.