Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 9x^{2}+48x^{3}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 9x^{2}\mathrm{d}x+\int 48x^{3}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
9\int x^{2}\mathrm{d}x+48\int x^{3}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
3x^{3}+48\int x^{3}\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 9 ki te \frac{x^{3}}{3}.
3x^{3}+12x^{4}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{3}\mathrm{d}x ki te \frac{x^{4}}{4}. Whakareatia 48 ki te \frac{x^{4}}{4}.
3\times 17^{3}+12\times 17^{4}-\left(3\times 0^{3}+12\times 0^{4}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
1016991
Whakarūnātia.