Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 5u^{5}+3u^{2}+u\mathrm{d}u
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 5u^{5}\mathrm{d}u+\int 3u^{2}\mathrm{d}u+\int u\mathrm{d}u
Kōmitimititia te kīanga tapeke mā te kīanga.
5\int u^{5}\mathrm{d}u+3\int u^{2}\mathrm{d}u+\int u\mathrm{d}u
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{5u^{6}}{6}+3\int u^{2}\mathrm{d}u+\int u\mathrm{d}u
Nā te mea \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int u^{5}\mathrm{d}u ki te \frac{u^{6}}{6}. Whakareatia 5 ki te \frac{u^{6}}{6}.
\frac{5u^{6}}{6}+u^{3}+\int u\mathrm{d}u
Nā te mea \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int u^{2}\mathrm{d}u ki te \frac{u^{3}}{3}. Whakareatia 3 ki te \frac{u^{3}}{3}.
\frac{5u^{6}}{6}+u^{3}+\frac{u^{2}}{2}
Nā te mea \int u^{k}\mathrm{d}u=\frac{u^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int u\mathrm{d}u ki te \frac{u^{2}}{2}.
\frac{5}{6}\times 1^{6}+1^{3}+\frac{1^{2}}{2}-\left(\frac{5}{6}\times 0^{6}+0^{3}+\frac{0^{2}}{2}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{7}{3}
Whakarūnātia.