Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 2^{x}+x^{2}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 2^{x}\mathrm{d}x+\int x^{2}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\frac{2^{x}}{\ln(2)}+\int x^{2}\mathrm{d}x
Whakamahia te \int x^{k}\mathrm{d}k=\frac{x^{k}}{\ln(x)} mai i te ripanga o ngā tau tōpū pātahi kia whakaputa i te huanga.
\frac{2^{x}}{\ln(2)}+\frac{x^{3}}{3}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}.
2^{1}\ln(2)^{-1}+\frac{1^{3}}{3}-\left(2^{0}\ln(2)^{-1}+\frac{0^{3}}{3}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{1}{3}+\frac{1}{\ln(2)}
Whakarūnātia.