Aromātai
1100
Tohaina
Kua tāruatia ki te papatopenga
\int _{0}^{1}720t^{3}+720t^{2}+880t+240\mathrm{d}t
Whakamahia te āhuatanga tuaritanga hei whakarea te 6t^{2}+4t+6 ki te 120t+40 ka whakakotahi i ngā kupu rite.
\int 720t^{3}+720t^{2}+880t+240\mathrm{d}t
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 720t^{3}\mathrm{d}t+\int 720t^{2}\mathrm{d}t+\int 880t\mathrm{d}t+\int 240\mathrm{d}t
Kōmitimititia te kīanga tapeke mā te kīanga.
720\int t^{3}\mathrm{d}t+720\int t^{2}\mathrm{d}t+880\int t\mathrm{d}t+\int 240\mathrm{d}t
Whakatauwehea te pūmau i ēnei kīanga katoa.
180t^{4}+720\int t^{2}\mathrm{d}t+880\int t\mathrm{d}t+\int 240\mathrm{d}t
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t^{3}\mathrm{d}t ki te \frac{t^{4}}{4}. Whakareatia 720 ki te \frac{t^{4}}{4}.
180t^{4}+240t^{3}+880\int t\mathrm{d}t+\int 240\mathrm{d}t
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t^{2}\mathrm{d}t ki te \frac{t^{3}}{3}. Whakareatia 720 ki te \frac{t^{3}}{3}.
180t^{4}+240t^{3}+440t^{2}+\int 240\mathrm{d}t
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t\mathrm{d}t ki te \frac{t^{2}}{2}. Whakareatia 880 ki te \frac{t^{2}}{2}.
180t^{4}+240t^{3}+440t^{2}+240t
Kimihia te tau tōpū o 240 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}t=at.
180\times 1^{4}+240\times 1^{3}+240\times 1+440\times 1^{2}-\left(180\times 0^{4}+240\times 0^{3}+240\times 0+440\times 0^{2}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
1100
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}