Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0}^{1}720t^{3}+720t^{2}+880t+240\mathrm{d}t
Whakamahia te āhuatanga tuaritanga hei whakarea te 6t^{2}+4t+6 ki te 120t+40 ka whakakotahi i ngā kupu rite.
\int 720t^{3}+720t^{2}+880t+240\mathrm{d}t
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 720t^{3}\mathrm{d}t+\int 720t^{2}\mathrm{d}t+\int 880t\mathrm{d}t+\int 240\mathrm{d}t
Kōmitimititia te kīanga tapeke mā te kīanga.
720\int t^{3}\mathrm{d}t+720\int t^{2}\mathrm{d}t+880\int t\mathrm{d}t+\int 240\mathrm{d}t
Whakatauwehea te pūmau i ēnei kīanga katoa.
180t^{4}+720\int t^{2}\mathrm{d}t+880\int t\mathrm{d}t+\int 240\mathrm{d}t
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t^{3}\mathrm{d}t ki te \frac{t^{4}}{4}. Whakareatia 720 ki te \frac{t^{4}}{4}.
180t^{4}+240t^{3}+880\int t\mathrm{d}t+\int 240\mathrm{d}t
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t^{2}\mathrm{d}t ki te \frac{t^{3}}{3}. Whakareatia 720 ki te \frac{t^{3}}{3}.
180t^{4}+240t^{3}+440t^{2}+\int 240\mathrm{d}t
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t\mathrm{d}t ki te \frac{t^{2}}{2}. Whakareatia 880 ki te \frac{t^{2}}{2}.
180t^{4}+240t^{3}+440t^{2}+240t
Kimihia te tau tōpū o 240 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}t=at.
180\times 1^{4}+240\times 1^{3}+240\times 1+440\times 1^{2}-\left(180\times 0^{4}+240\times 0^{3}+240\times 0+440\times 0^{2}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
1100
Whakarūnātia.