Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0}^{1}6x^{2}-10x+9x-15\mathrm{d}x
Me hoatu te āhuatanga tohatoha mā te whakarea ia tau o 2x+3 ki ia tau o 3x-5.
\int _{0}^{1}6x^{2}-x-15\mathrm{d}x
Pahekotia te -10x me 9x, ka -x.
\int 6x^{2}-x-15\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 6x^{2}\mathrm{d}x+\int -x\mathrm{d}x+\int -15\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
6\int x^{2}\mathrm{d}x-\int x\mathrm{d}x+\int -15\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
2x^{3}-\int x\mathrm{d}x+\int -15\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 6 ki te \frac{x^{3}}{3}.
2x^{3}-\frac{x^{2}}{2}+\int -15\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -1 ki te \frac{x^{2}}{2}.
2x^{3}-\frac{x^{2}}{2}-15x
Kimihia te tau tōpū o -15 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
2\times 1^{3}-\frac{1^{2}}{2}-15-\left(2\times 0^{3}-\frac{0^{2}}{2}-15\times 0\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-\frac{27}{2}
Whakarūnātia.