Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{0}^{1}\sqrt{y}\mathrm{d}y
Pahekotia te 2\sqrt{y} me -\sqrt{y}, ka \sqrt{y}.
\int \sqrt{y}\mathrm{d}y
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\frac{2y^{\frac{3}{2}}}{3}
Tuhia anō te \sqrt{y} hei y^{\frac{1}{2}}. Nā te mea \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int y^{\frac{1}{2}}\mathrm{d}y ki te \frac{y^{\frac{3}{2}}}{\frac{3}{2}}. Whakarūnātia.
\frac{2}{3}\times 1^{\frac{3}{2}}-\frac{2}{3}\times 0^{\frac{3}{2}}
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{2}{3}
Whakarūnātia.