Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 1-8v^{3}+16v^{7}\mathrm{d}v
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 1\mathrm{d}v+\int -8v^{3}\mathrm{d}v+\int 16v^{7}\mathrm{d}v
Kōmitimititia te kīanga tapeke mā te kīanga.
\int 1\mathrm{d}v-8\int v^{3}\mathrm{d}v+16\int v^{7}\mathrm{d}v
Whakatauwehea te pūmau i ēnei kīanga katoa.
v-8\int v^{3}\mathrm{d}v+16\int v^{7}\mathrm{d}v
Kimihia te tau tōpū o 1 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}v=av.
v-2v^{4}+16\int v^{7}\mathrm{d}v
Nā te mea \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int v^{3}\mathrm{d}v ki te \frac{v^{4}}{4}. Whakareatia -8 ki te \frac{v^{4}}{4}.
v-2v^{4}+2v^{8}
Nā te mea \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int v^{7}\mathrm{d}v ki te \frac{v^{8}}{8}. Whakareatia 16 ki te \frac{v^{8}}{8}.
1-2\times 1^{4}+2\times 1^{8}-\left(0-2\times 0^{4}+2\times 0^{8}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
1
Whakarūnātia.