Aromātai
1
Pātaitai
Integration
5 raruraru e ōrite ana ki:
\int _ { 0 } ^ { 1 } ( 1 - 8 v ^ { 3 } + 16 v ^ { 7 } ) d v
Tohaina
Kua tāruatia ki te papatopenga
\int 1-8v^{3}+16v^{7}\mathrm{d}v
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 1\mathrm{d}v+\int -8v^{3}\mathrm{d}v+\int 16v^{7}\mathrm{d}v
Kōmitimititia te kīanga tapeke mā te kīanga.
\int 1\mathrm{d}v-8\int v^{3}\mathrm{d}v+16\int v^{7}\mathrm{d}v
Whakatauwehea te pūmau i ēnei kīanga katoa.
v-8\int v^{3}\mathrm{d}v+16\int v^{7}\mathrm{d}v
Kimihia te tau tōpū o 1 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}v=av.
v-2v^{4}+16\int v^{7}\mathrm{d}v
Nā te mea \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int v^{3}\mathrm{d}v ki te \frac{v^{4}}{4}. Whakareatia -8 ki te \frac{v^{4}}{4}.
v-2v^{4}+2v^{8}
Nā te mea \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int v^{7}\mathrm{d}v ki te \frac{v^{8}}{8}. Whakareatia 16 ki te \frac{v^{8}}{8}.
1-2\times 1^{4}+2\times 1^{8}-\left(0-2\times 0^{4}+2\times 0^{8}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
1
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}