Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \sqrt{x}-x^{2}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int \sqrt{x}\mathrm{d}x+\int -x^{2}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\int \sqrt{x}\mathrm{d}x-\int x^{2}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{2x^{\frac{3}{2}}}{3}-\int x^{2}\mathrm{d}x
Tuhia anō te \sqrt{x} hei x^{\frac{1}{2}}. Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{\frac{1}{2}}\mathrm{d}x ki te \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Whakarūnātia.
\frac{2x^{\frac{3}{2}}-x^{3}}{3}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia -1 ki te \frac{x^{3}}{3}.
\frac{2}{3}\times 1^{\frac{3}{2}}-\frac{1^{3}}{3}-\left(\frac{2}{3}\times 0^{\frac{3}{2}}-\frac{0^{3}}{3}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{1}{3}
Whakarūnātia.