Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \frac{1-y^{3}}{3}\mathrm{d}y
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int \frac{1}{3}\mathrm{d}y+\int -\frac{y^{3}}{3}\mathrm{d}y
Kōmitimititia te kīanga tapeke mā te kīanga.
\int \frac{1}{3}\mathrm{d}y-\frac{\int y^{3}\mathrm{d}y}{3}
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{y-\int y^{3}\mathrm{d}y}{3}
Kimihia te tau tōpū o \frac{1}{3} mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}y=ay.
\frac{y}{3}-\frac{y^{4}}{12}
Nā te mea \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int y^{3}\mathrm{d}y ki te \frac{y^{4}}{4}. Whakareatia -\frac{1}{3} ki te \frac{y^{4}}{4}.
\frac{1}{3}\times 1-\frac{1^{4}}{12}-\left(\frac{1}{3}\times 0-\frac{0^{4}}{12}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{1}{4}
Whakarūnātia.