Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \frac{v^{2}}{2}\mathrm{d}v
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\frac{\int v^{2}\mathrm{d}v}{2}
Whakatauwehetia te pūmau mā te whakamahi i te \int af\left(v\right)\mathrm{d}v=a\int f\left(v\right)\mathrm{d}v.
\frac{v^{3}}{6}
Nā te mea \int v^{k}\mathrm{d}v=\frac{v^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int v^{2}\mathrm{d}v ki te \frac{v^{3}}{3}.
\frac{1^{3}}{6}-\frac{0^{3}}{6}
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{1}{6}
Whakarūnātia.