Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 528x+384x^{2}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 528x\mathrm{d}x+\int 384x^{2}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
528\int x\mathrm{d}x+384\int x^{2}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
264x^{2}+384\int x^{2}\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 528 ki te \frac{x^{2}}{2}.
264x^{2}+128x^{3}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 384 ki te \frac{x^{3}}{3}.
264\times \left(0\times 5\right)^{2}+128\times \left(0\times 5\right)^{3}-\left(264\times 0^{2}+128\times 0^{3}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
0
Whakarūnātia.