Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int -3x-\sqrt{x}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int -3x\mathrm{d}x+\int -\sqrt{x}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
-3\int x\mathrm{d}x-\int \sqrt{x}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
-\frac{3x^{2}}{2}-\int \sqrt{x}\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -3 ki te \frac{x^{2}}{2}.
-\frac{3x^{2}}{2}-\frac{2x^{\frac{3}{2}}}{3}
Tuhia anō te \sqrt{x} hei x^{\frac{1}{2}}. Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{\frac{1}{2}}\mathrm{d}x ki te \frac{x^{\frac{3}{2}}}{\frac{3}{2}}. Whakarūnātia. Whakareatia -1 ki te \frac{2x^{\frac{3}{2}}}{3}.
-\frac{3}{2}\times \left(0\times 4\right)^{2}-\frac{2}{3}\times \left(0\times 4\right)^{\frac{3}{2}}-\left(-\frac{3}{2}\times 0^{2}-\frac{2}{3}\times 0^{\frac{3}{2}}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\text{Indeterminate}
Whakarūnātia.