Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image
Kimi Pārōnaki e ai ki n
Tick mark Image

Tohaina

\int _{0}^{\pi }x^{2}\cos(n)\sqrt{\pi }\mathrm{d}x
Whakareatia te x ki te x, ka x^{2}.
\int x^{2}\cos(n)\sqrt{\pi }\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\cos(n)\sqrt{\pi }\int x^{2}\mathrm{d}x
Whakatauwehetia te pūmau mā te whakamahi i te \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\cos(n)\sqrt{\pi }\times \frac{x^{3}}{3}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}.
\frac{\sqrt{\pi }\cos(n)x^{3}}{3}
Whakarūnātia.
\frac{1}{3}\pi ^{\frac{1}{2}}\cos(n)\pi ^{3}-\frac{1}{3}\pi ^{\frac{1}{2}}\cos(n)\times 0^{3}
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{\cos(n)\pi ^{\frac{7}{2}}}{3}
Whakarūnātia.