Aromātai
\frac{\pi ^{\frac{7}{2}}\cos(n)}{3}
Kimi Pārōnaki e ai ki n
-\frac{\pi ^{\frac{7}{2}}\sin(n)}{3}
Pātaitai
Integration
5 raruraru e ōrite ana ki:
\int _ { 0 } ^ { \pi } x \cdot \cos n \sqrt { \pi } x d x
Tohaina
Kua tāruatia ki te papatopenga
\int _{0}^{\pi }x^{2}\cos(n)\sqrt{\pi }\mathrm{d}x
Whakareatia te x ki te x, ka x^{2}.
\int x^{2}\cos(n)\sqrt{\pi }\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\cos(n)\sqrt{\pi }\int x^{2}\mathrm{d}x
Whakatauwehetia te pūmau mā te whakamahi i te \int af\left(x\right)\mathrm{d}x=a\int f\left(x\right)\mathrm{d}x.
\cos(n)\sqrt{\pi }\times \frac{x^{3}}{3}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}.
\frac{\sqrt{\pi }\cos(n)x^{3}}{3}
Whakarūnātia.
\frac{1}{3}\pi ^{\frac{1}{2}}\cos(n)\pi ^{3}-\frac{1}{3}\pi ^{\frac{1}{2}}\cos(n)\times 0^{3}
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{\cos(n)\pi ^{\frac{7}{2}}}{3}
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}