Aromātai
\frac{\pi \left(\cos(\theta )-1\right)^{2}}{3}
Kimi Pārōnaki e ai ki θ
-\frac{2\pi \sin(\theta )\left(\cos(\theta )-1\right)}{3}
Pātaitai
Integration
5 raruraru e ōrite ana ki:
\int _ { 0 } ^ { \pi / 3 } ( 1 - \cos \theta ) ^ { 2 } d s
Tohaina
Kua tāruatia ki te papatopenga
\int \left(1-\cos(\theta )\right)^{2}\mathrm{d}s
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\left(1-\cos(\theta )\right)^{2}s
Kimihia te tau tōpū o \left(1-\cos(\theta )\right)^{2} mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}s=as.
\frac{1}{3}\left(1-\cos(\theta )\right)^{2}\pi +0\left(1-\cos(\theta )\right)^{2}
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{\left(\cos(\theta )-1\right)^{2}\pi }{3}
Whakarūnātia.
Ngā Tauira
whārite tapawhā
{ x } ^ { 2 } - 4 x - 5 = 0
Āhuahanga
4 \sin \theta \cos \theta = 2 \sin \theta
whārite paerangi
y = 3x + 4
Arithmetic
699 * 533
Poukapa
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
whārite Simultaneous
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
Whakarerekētanga
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
Whakaurunga
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
Ngā Tepe
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}