Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 2y-3y^{2}-y^{2}\mathrm{d}y
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 2y\mathrm{d}y+\int -3y^{2}\mathrm{d}y+\int -y^{2}\mathrm{d}y
Kōmitimititia te kīanga tapeke mā te kīanga.
2\int y\mathrm{d}y-3\int y^{2}\mathrm{d}y-\int y^{2}\mathrm{d}y
Whakatauwehea te pūmau i ēnei kīanga katoa.
y^{2}-3\int y^{2}\mathrm{d}y-\int y^{2}\mathrm{d}y
Nā te mea \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int y\mathrm{d}y ki te \frac{y^{2}}{2}. Whakareatia 2 ki te \frac{y^{2}}{2}.
y^{2}-y^{3}-\int y^{2}\mathrm{d}y
Nā te mea \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int y^{2}\mathrm{d}y ki te \frac{y^{3}}{3}. Whakareatia -3 ki te \frac{y^{3}}{3}.
y^{2}-y^{3}-\frac{y^{3}}{3}
Nā te mea \int y^{k}\mathrm{d}y=\frac{y^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int y^{2}\mathrm{d}y ki te \frac{y^{3}}{3}. Whakareatia -1 ki te \frac{y^{3}}{3}.
y^{2}-\frac{4y^{3}}{3}
Whakarūnātia.
\left(\frac{1}{2}\right)^{2}-\frac{4}{3}\times \left(\frac{1}{2}\right)^{3}-\left(0^{2}-\frac{4}{3}\times 0^{3}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{1}{12}
Whakarūnātia.