Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int \frac{x^{2}}{2}-x^{4}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int \frac{x^{2}}{2}\mathrm{d}x+\int -x^{4}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\frac{\int x^{2}\mathrm{d}x}{2}-\int x^{4}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{x^{3}}{6}-\int x^{4}\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia \frac{1}{2} ki te \frac{x^{3}}{3}.
\frac{x^{3}}{6}-\frac{x^{5}}{5}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{4}\mathrm{d}x ki te \frac{x^{5}}{5}. Whakareatia -1 ki te \frac{x^{5}}{5}.
\frac{1}{6}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{3}-\frac{1}{5}\times \left(\frac{1}{2}\times 2^{\frac{1}{2}}\right)^{5}-\left(\frac{0^{3}}{6}-\frac{0^{5}}{5}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{\sqrt{2}}{60}
Whakarūnātia.