Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 12-x-x^{2}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 12\mathrm{d}x+\int -x\mathrm{d}x+\int -x^{2}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\int 12\mathrm{d}x-\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
12x-\int x\mathrm{d}x-\int x^{2}\mathrm{d}x
Kimihia te tau tōpū o 12 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
12x-\frac{x^{2}}{2}-\int x^{2}\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia -1 ki te \frac{x^{2}}{2}.
12x-\frac{x^{2}}{2}-\frac{x^{3}}{3}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia -1 ki te \frac{x^{3}}{3}.
12\times 3-\frac{3^{2}}{2}-\frac{3^{3}}{3}-\left(12\left(-4\right)-\frac{\left(-4\right)^{2}}{2}-\frac{\left(-4\right)^{3}}{3}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{343}{6}
Whakarūnātia.