Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{-2}^{5}64x^{3}-144x^{2}+108x-27\mathrm{d}x
Whakamahia te ture huarua \left(a-b\right)^{3}=a^{3}-3a^{2}b+3ab^{2}-b^{3} hei whakaroha \left(4x-3\right)^{3}.
\int 64x^{3}-144x^{2}+108x-27\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 64x^{3}\mathrm{d}x+\int -144x^{2}\mathrm{d}x+\int 108x\mathrm{d}x+\int -27\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
64\int x^{3}\mathrm{d}x-144\int x^{2}\mathrm{d}x+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
16x^{4}-144\int x^{2}\mathrm{d}x+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{3}\mathrm{d}x ki te \frac{x^{4}}{4}. Whakareatia 64 ki te \frac{x^{4}}{4}.
16x^{4}-48x^{3}+108\int x\mathrm{d}x+\int -27\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia -144 ki te \frac{x^{3}}{3}.
16x^{4}-48x^{3}+54x^{2}+\int -27\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 108 ki te \frac{x^{2}}{2}.
16x^{4}-48x^{3}+54x^{2}-27x
Kimihia te tau tōpū o -27 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
16\times 5^{4}-48\times 5^{3}+54\times 5^{2}-27\times 5-\left(16\left(-2\right)^{4}-48\left(-2\right)^{3}+54\left(-2\right)^{2}-27\left(-2\right)\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
4305
Whakarūnātia.