Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int -\frac{x^{2}}{2}+2\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int -\frac{x^{2}}{2}\mathrm{d}x+\int 2\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
-\frac{\int x^{2}\mathrm{d}x}{2}+\int 2\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
-\frac{x^{3}}{6}+\int 2\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia -0.5 ki te \frac{x^{3}}{3}.
-\frac{x^{3}}{6}+2x
Kimihia te tau tōpū o 2 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
-\frac{2^{3}}{6}+2\times 2-\left(-\frac{\left(-2\right)^{3}}{6}+2\left(-2\right)\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{16}{3}
Whakarūnātia.