Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 3x^{2}+x-1\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 3x^{2}\mathrm{d}x+\int x\mathrm{d}x+\int -1\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
3\int x^{2}\mathrm{d}x+\int x\mathrm{d}x+\int -1\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
x^{3}+\int x\mathrm{d}x+\int -1\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 3 ki te \frac{x^{3}}{3}.
x^{3}+\frac{x^{2}}{2}+\int -1\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}.
x^{3}+\frac{x^{2}}{2}-x
Kimihia te tau tōpū o -1 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
0^{3}+\frac{0^{2}}{2}-0-\left(\left(-2\right)^{3}+\frac{\left(-2\right)^{2}}{2}-\left(-2\right)\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
4
Whakarūnātia.