Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int -3x^{2}+11x+25\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int -3x^{2}\mathrm{d}x+\int 11x\mathrm{d}x+\int 25\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
-3\int x^{2}\mathrm{d}x+11\int x\mathrm{d}x+\int 25\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
-x^{3}+11\int x\mathrm{d}x+\int 25\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia -3 ki te \frac{x^{3}}{3}.
-x^{3}+\frac{11x^{2}}{2}+\int 25\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 11 ki te \frac{x^{2}}{2}.
-x^{3}+\frac{11x^{2}}{2}+25x
Kimihia te tau tōpū o 25 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
-5^{3}+\frac{11}{2}\times 5^{2}+25\times 5-\left(-\left(-1.5\right)^{3}+\frac{11}{2}\left(-1.5\right)^{2}+25\left(-1.5\right)\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{637}{4}
Whakarūnātia.