Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int x^{2}+2x-6\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int x^{2}\mathrm{d}x+\int 2x\mathrm{d}x+\int -6\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\int x^{2}\mathrm{d}x+2\int x\mathrm{d}x+\int -6\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{x^{3}}{3}+2\int x\mathrm{d}x+\int -6\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}.
\frac{x^{3}}{3}+x^{2}+\int -6\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}. Whakareatia 2 ki te \frac{x^{2}}{2}.
\frac{x^{3}}{3}+x^{2}-6x
Kimihia te tau tōpū o -6 mā te whakamahi i te ture mō te ripanga o ngā tau tōpū pātahi \int a\mathrm{d}x=ax.
\frac{3^{3}}{3}+3^{2}-6\times 3-\left(\frac{\left(-1\right)^{3}}{3}+\left(-1\right)^{2}-6\left(-1\right)\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-\frac{20}{3}
Whakarūnātia.