Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int 2x^{2}+x\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int 2x^{2}\mathrm{d}x+\int x\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
2\int x^{2}\mathrm{d}x+\int x\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{2x^{3}}{3}+\int x\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{2}\mathrm{d}x ki te \frac{x^{3}}{3}. Whakareatia 2 ki te \frac{x^{3}}{3}.
\frac{2x^{3}}{3}+\frac{x^{2}}{2}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}.
\frac{2}{3}\times 2^{3}+\frac{2^{2}}{2}-\left(\frac{2}{3}\left(-1\right)^{3}+\frac{\left(-1\right)^{2}}{2}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
\frac{15}{2}
Whakarūnātia.