Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int x-x^{3}\mathrm{d}x
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int x\mathrm{d}x+\int -x^{3}\mathrm{d}x
Kōmitimititia te kīanga tapeke mā te kīanga.
\int x\mathrm{d}x-\int x^{3}\mathrm{d}x
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{x^{2}}{2}-\int x^{3}\mathrm{d}x
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x\mathrm{d}x ki te \frac{x^{2}}{2}.
\frac{x^{2}}{2}-\frac{x^{4}}{4}
Nā te mea \int x^{k}\mathrm{d}x=\frac{x^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int x^{3}\mathrm{d}x ki te \frac{x^{4}}{4}. Whakareatia -1 ki te \frac{x^{4}}{4}.
\frac{1^{2}}{2}-\frac{1^{4}}{4}-\left(\frac{\left(-1\right)^{2}}{2}-\frac{\left(-1\right)^{4}}{4}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
0
Whakarūnātia.