Tīpoka ki ngā ihirangi matua
Aromātai
Tick mark Image

Ngā Raru Ōrite mai i te Rapu Tukutuku

Tohaina

\int _{-1}^{1}t-2t^{2}\mathrm{d}t
Whakamahia te āhuatanga tohatoha hei whakarea te t ki te 1-2t.
\int t-2t^{2}\mathrm{d}t
Aromātaitia te tau tōpū tautuhi-kore i te tuatahi.
\int t\mathrm{d}t+\int -2t^{2}\mathrm{d}t
Kōmitimititia te kīanga tapeke mā te kīanga.
\int t\mathrm{d}t-2\int t^{2}\mathrm{d}t
Whakatauwehea te pūmau i ēnei kīanga katoa.
\frac{t^{2}}{2}-2\int t^{2}\mathrm{d}t
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t\mathrm{d}t ki te \frac{t^{2}}{2}.
\frac{t^{2}}{2}-\frac{2t^{3}}{3}
Nā te mea \int t^{k}\mathrm{d}t=\frac{t^{k+1}}{k+1} mō te k\neq -1, me whakakapi \int t^{2}\mathrm{d}t ki te \frac{t^{3}}{3}. Whakareatia -2 ki te \frac{t^{3}}{3}.
\frac{1^{2}}{2}-\frac{2}{3}\times 1^{3}-\left(\frac{\left(-1\right)^{2}}{2}-\frac{2}{3}\left(-1\right)^{3}\right)
Ko te tau tōpū tautuhi ko te pārōnaki kōaro o te kīanga i aromātaitia i te tepe tōrunga o te pāwhaitua, tangohia te pārōnaki kōaro i aromātaitia i te tepe tōraro o te pāwhaitua.
-\frac{4}{3}
Whakarūnātia.